Improving Open-Domain Dialogue Evaluation with a Causal Inference Model

Cat P. Le, Luke Dai, Michael Johnston, Yang Liu, Marilyn Walker, and Reza Ghanadan

About me

- Cat P. Le is a Ph.D. Candidate in machine learning at Duke University.
- His research interests: transfer learning, few-shot learning, multi-task learning, meta-learning.
- This work was done while he was a research scientist intern at Amazon Alexa Al.

Open-Domain Dialogue System

- No specific goal but trying to be engaging and interactive with users.
- Generate coherent and meaningful responses.

It is sunny outside here in London, so I plan to go out to play football.

I am a big fan of Manchester United.

Definitely...

How is the weather at your place today?

I love football, too. What is your favorite EPL team?

alexa

amazon alexa

Do you plan to watch their upcoming match tomorrow?

Alexa Prize SocialBot

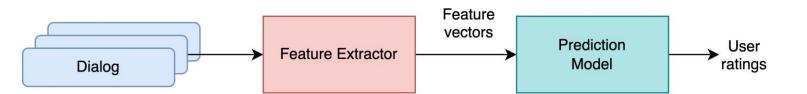
- The **SocialBot** is an Alexa skill that can chat coherently and engagingly with users on popular topics and genres with widely varying lengths.
- Dialogues are de-identified conversations from thousands of users.
- User are asked for the *satisfaction ratings* (from 1-5 stars) on the quality of SocialBot.
- However, these ratings are often biased or subjective.
- As a result, evaluation system for open-domain dialogue remains a challenging problem.

Evaluation Factors

- The *end-to-end* (E2E) evaluation approaches often perform well on expert-rated but not on user-rated data.
- Numerous factors can affect user *satisfaction* ratings.
 - Sentiment score is shown to be strongly correlated with user ratings.
 - Response relevance and specificity are also useful representations.
 - Triggered word (e.g., insults, complains) can be used as a quick indicator for bad dialogs.

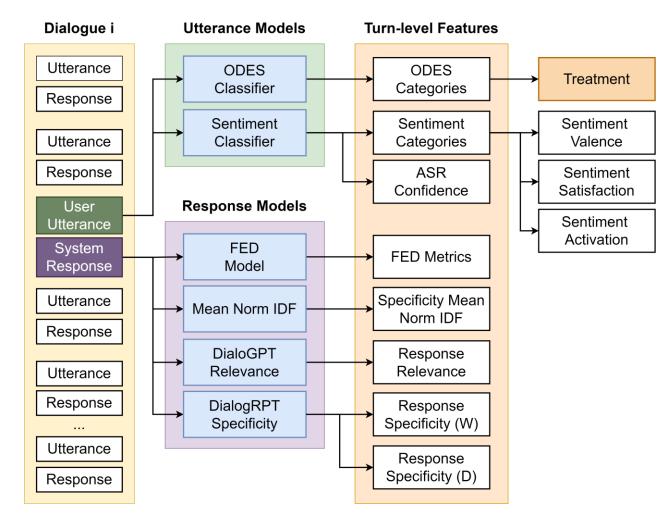
Proposed Method

- Our proposed method aims to predict the user ratings based on the meaningful features from the dialogue.
- Our framework consists of two components:
 - **Dialogue Turn-level Feature Extractors** convert each turn pair in the dialogue into a feature vector representations (e.g., sentiment, response relevance, specificity, text categories).
 - **Counterfactual LSTM (CF-LSTM)** utilizes the extracted dialogue features for learning to predict the user ratings.



amazon alexa

Dialogue Turn-level Feature Extractors



- Six models is utilized to extract features for each utterance-response pair.
- Two models for the utterances and four models for the responses.

ODES Turn-level Feature

Class	ODES Name	Counts	Example		
i	User	10,938	SocialBot: Did you know that otters sleep holding hands?		
	disinterest		User: I really couldn't care less.		
ii	User	12,290	SocialBot : Who do you think will win Superbowl 2019?		
	critique		User: You are really a very stupid bot.		
iii	User not	12,399	SocialBot : What is your favorite genre of video game?		
	understand		User: I don't know what genre means.		
iv	User requests	21,278	SocialBot: Who is your favorite Batman actor?		
	topic switch		User: Can we talk about something else?		
v	User	66,532	SocialBot: Do you have a favorite movie?		
	obscenity		User: B*** me.		
vi	User rejects	4,389	SocialBot: I love country music too. But I was wondering,		
	topic switch		do you have a favorite sport?		
	-		User: No, I want to keep talking about music.		
vii	User requests	26,779	SocialBot: Would you rather climb the Eiffel Tower or the		
	to repeat		Empire State Building?		
	_		User: Could you say that again?		
viii	User requests	78,504	SocialBot: I just love talking about music. What is your		
	to stop		favorite kind of music?		
	_		User: Please stop I need to go to bed.		
ix	User insult	12,173	SocialBot: Wow, Taylor Swift has 97 albums. That's a lot!		
			User: You are so full of sh**.		
х	User	57,539	SocialBot: Did you know LeBron James Jr has a college		
	compliment		football scholarship, and he's only 12 years old?		
			User: That's really interesting.		
xi	User calls out	15,052	SocialBot: What's your favourite football team?		
	repetition		User: You already asked me that question twice.		
xii	User calls out	3,147	SocialBot: I don't have any pets.		
	contradiction		User: You just said you had a cat.		
xiii	System not	12,534	User: Can we talk about Elle King?		
	understand		SocialBot: I like BB King too.		
			User: That's not what I said.		
xiv	Others	2,320,515	SocialBot: Do you like K-Pop music?		
			User: Yes, I often listen to Blackpink and BTS.		

- Open-Dialogue Evaluation Signals Classifier (ODES) is proposed to categorize dialogues into the 14 classes.
- Subsequently, it is used to assign the treatment for causal analysis with CF-LSTM.

Other Turn-level Features

- Sentiment analysis includes valence, satisfaction, and activation.
- Response relevance is based on DialoGPT.
- Response specificities (width and depth) are based on DialogRPT.
- Other features includes FED, ASR conf. score, and specificity mean norm IDF.

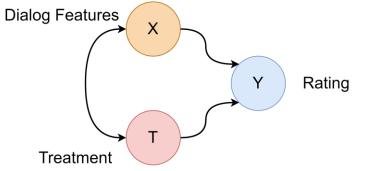
Turn-level to Dialogue-level Features

- The turn-level features are **stacked** into a dialogue-level feature vector for each dialogue.
- Since each dialogue has a different number of turn pairs, the dialogue-level features are varied-length vectors.
- Additionally, the treatment assignment is added for each dialoguelevel feature.
- Particularly, treatment T = 1 is assigned for poorly-rated dialogues by the ODES classifier (e.g., dialogs where users complain, insult), and treatment T = 0 is assigned for the remaining dialogues.

amazon alexa

Causal Inference in Dialog Evaluation

- The ODES classifier is not perfect and can label dialogues incorrectly.
- Dialogue with the same extracted feature vectors might be totally different in terms of satisfaction ratings.
 - E.g., Sad sentiments might indicate the user's dissatisfaction or the heartbreaking content of the conversation.
- Causal analysis aims to study the treatment effect on open-domain dialogues.



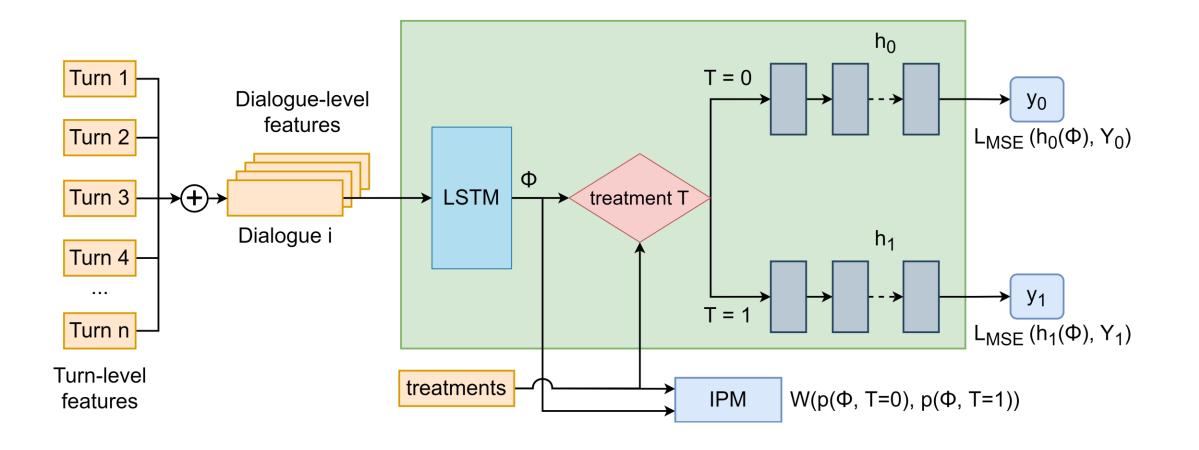
amazon alexa

Counterfactual-LSTM (CF-LSTM)

- CF-LSTM is a causal inference model that aims to investigate the potential outcomes (ratings) of the dialogs under different hypotheses (treatments).
- It maps the *dialogue-level features* to the *user ratings* based on a specific hypothesis based on the ODES classes.
- Its structure consists of the LSTM layers and 2 individual MLP regressors, each trained individually to predict ratings on a specific hypothesis.

amazon alexa

Structure of CF-LSTM



amazon alexa

Loss Function

- The Integral probability metric (IPM) is used to avoid introducing variance and bias into the model.
- This metric measures the **Wasserstein distance** between two distributions $p(\phi, T = 0), p(\phi, T = 1)$.
- The loss function of the CF-LSTM is described as follows:

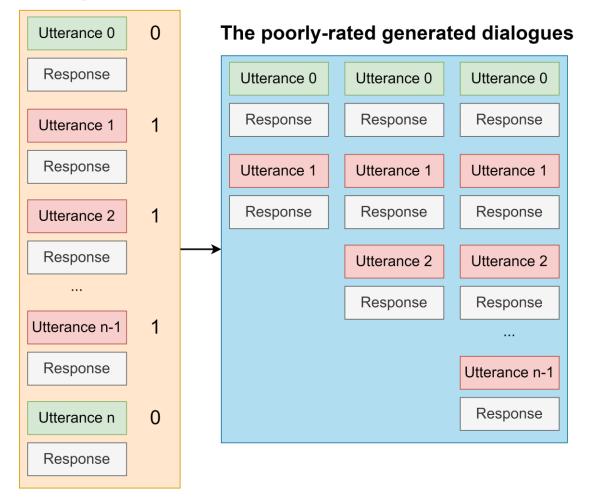
$$\begin{split} L &= L_{MSE}(h_0(\phi), Y_0 | T = 0) + L_{MSE}(h_1(\phi), Y_1 | T = 1) \\ &+ \alpha W(p(\phi, T = 0), p(\phi, T = 1)) \end{split}$$

where α controls the *trade-off* between the similarity of the representations (ϕ) and the model's performance on the factual data.

amazon alexa

Data Augmentation

Dialogue i



• Data masking is used to generated poorly-rated dialogues.

- Expose the system with *"short"* poorly-rated dialogs.
- Help the system learn to quickly detect bad dialogues at *run-time*.

Experiments

• Here, we compare our proposed method with the E2E Transformer, Dialogue-level MLP, and Dialog-level LSTM.

• The **regression** problems:

- Individual rating prediction
- Daily average rating prediction
- 7-day average rating prediction
- The classification problems:
 - Binary classification: the label 0 is assigned for ratings with less than 3 stars (poorly-rated) and the label 1 if ratings are greater than or equal to 3 stars (highly-rated).
 - 5-class classification: the ratings are rounded half-up into 5 groups.

Prediction Performances

Table 2 The comparisons between open-dialogue evaluation methods for the regression problem in terms of Pearson correlation (e.g., individual, L1d, L7d predictions) and the classification problems (e.g., binary, 5-class) in terms of prediction accuracy, on SocialBot conversations

Methods	INDIVIDUAL Prediction	L1d* Prediction	L7d [†] Prediction		5-CLASS CLASS.
E2E TRANSFORMER	0.22	0.30	0.47	54.1%	32.8%
DIALOGUE-LEVEL LSTM	0.30	0.41	0.59	64.6%	43.5%
DIALOGUE-LEVEL MLP	0.31	0.40	0.66	62.5%	46.1%
CF-LSTM	0.34	0.46	0.68	67.8%	48.2%

* DAILY AVERAGE PREDICTION, [†] 7-DAY ROLLING AVERAGE PREDICTION

Causal Analysis

- Consider the scenario in which the ODES classifier *accidentally flips* the treatment assignments.
- The model is robust where the predicted ratings show high correlations with the ground truth, even when treatment labels are incorrectly reversed.

Table 3 The correlations ofCF-LSTM when the treatmentassignments for all dialoguesare inverted.

PEARSON CORRELATION		INVERTED TREATMENTS
INDIVIDUAL PREDICTION	0.34	0.26
L1D PREDICTION	0.46	0.35
L7D PREDICTION	0.68	0.52

amazon alexa

 * daily average, † 7-day rolling average

Average Treatment Effect

- In Rubin causality, the common interest is to study the causal effect of the treatment assignment.
- The average treatment effect (ATE) is shown as follows: $ATE = E[Y_{1i} - Y_{0i}] = -0.7809$
- The ATE indicates that, on average, dialogues with T = 1 (i.e., presumably bad dialogs) will have lower user ratings than dialogues with T = 0 by 0.7809.

Conclusions

- CF-LSTM is robust in learning complex representations and can predict the ratings for dialogues under different hypotheses.
- It can be applied at run-time to identify low-quality dialogs and propose different topics to improve the user experience.
- ➢In future work, increasing the number of treatments can help further improve the model's performance and flexibility.

