
TASK-AWARE NEURAL ARCHITECTURE SEARCH
Cat P. Le, Mohammadreza Soltani, Robert Ravier, Vahid Tarokh
2021 IEEE International Conference on Acoustics, Speech and Signal Processing

The design of handcrafted neural networks
requires a lot of time and resources. Recent
techniques in Neural Architecture Search (NAS)
have proven to be competitive or better than
traditional handcrafted design, although they
require domain knowledge and have generally
used limited search spaces. We propose a novel
framework for architecture search, utilizing a
dictionary of base tasks and the similarity
between the target task and the atoms of the
dictionary; hence, generating an adaptive search
space based on the related base tasks of the
dictionary. Lastly, we introduce the Fusion
Search (FUSE) algorithm to evaluate and
discover the best architecture in the search
space without fully training the networks.

INTRODUCTION RESULTS

TASK REPRESENTATION
CONCLUSIONS

METHODS

Given a dictionary of previous task-data pairs.
For any target task-data pair, our goal is to find
an architecture for achieving high performance
on the target task. The proposed Task-aware
Neural Architecture Search (TA-NAS) works as
follows:

1. Task Similarity. Given an incoming task-
data set pair, TA-NAS finds the most related 
task-data set pairs in the dictionary. 

2. Search Space. TA-NAS defines a suitable 
search space for the target task-data set 
pair, based on the related pairs. 

3. Search Algorithm. TA-NAS searches to 
discover an optimal architecture in term of 
performance for the target task-data set pair 
on the search space.

We proposed TA-NAS to address the Neural
Architecture Search problem. By introducing the
task similarity, we can create a restricted search
space and quickly evaluate candidates using the
FUSE search algorithm. This search algorithm
can be applied to find the best way to grow or to
compress the current network.

Architecture Error 
(%)

Param 
(M)

GPU 
days

ResNet-18 1.42 11.44 -
ResNet-34 1.2 21.54 -
DenseNet-161 1.17 27.6 -
Random Search 1.33 2.55 4
FUSE w. standard space 1.21 2.89 2
FUSE w. task-aware space 1.18 2.72 2

For our experiment, we initialize with a set of
base binary classification tasks consisting of
finding specific digits in MNIST and specific
objects in Fashion-MNIST. Let the target task be
the binary classification task from Quick, Draw!
data set. Tasks from the same data set are more
similar than tasks from different data sets.

Fig. 3. The distance matrix of base tasks

Table 1. The comparison with image classifiers
on Quick, Draw!

In our framework, we represent a task-data set
pair by neural network. A network architecture is
ε-representative of a specific task if it performs
sufficiently well on the given task-data set pair. In
practice, well-known hand-designed architecture
can be chosen as the representation.

Let A = (TA, XA) and B = (TB, XB) be two task-data set pairs, where NA and NB are two
trained architectures that are ε-representative for A and B, respectively. We can define
a dissimilarity measure between A and B as follows:

𝑑𝑑𝐴𝐴,𝐵𝐵
𝜖𝜖 = min

𝑁𝑁𝑡𝑡∈𝑆𝑆𝑡𝑡: ℒ𝐵𝐵 𝑁𝑁𝑡𝑡∘𝑁𝑁𝐴𝐴 ≥1−𝜖𝜖
𝑂𝑂(𝑁𝑁𝑡𝑡)

where St is a given transform network search space, and O() is a general measure of 
complexity (e.g., the number of parameters in a network), and Nt is the network that 
take the last-layer hidden features of NA and transform them into NB’s.

SEARCH SPACE

SEARCH ALGORITHM

TASK SIMILARITY

Fig. 1. Illustration of the procedure to compute the distance from task A to task B.

Fig. 2. Examples of the cell and the skeleton

The search space is defined by the
structures of cell and skeleton. A cell is
a densely connected directed-acyclic
graph of nodes, where all nodes are
connected by operations. The skeleton
is often predefined. Here, we construct
the search space of the target task by
combining the skeletons, cells, and
operations from only the most similar
pairs in the dictionary.

Fusion Search (FUSE) is a search
algorithm that considers the network
candidates as a whole and performs the
optimization using gradient descent. For
any set of C candidates, we relax the
outputs by exponential weights:

̅𝑐𝑐 𝑋𝑋 = �
𝑐𝑐∈𝑪𝑪

exp 𝛼𝛼𝑐𝑐
∑𝑐𝑐′∈𝑪𝑪 exp 𝛼𝛼𝑐𝑐′

𝑐𝑐(𝑋𝑋)

The training procedure is based on
alternative minimization and can be
divided into:
 freeze α, train network’s weights:

min
𝑤𝑤

ℒ(𝑤𝑤;𝛼𝛼, ̅𝑐𝑐,𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

 freeze network’s weights, update α:
min
𝑤𝑤

ℒ(𝛼𝛼;𝑤𝑤, ̅𝑐𝑐,𝑋𝑋𝑣𝑣𝑡𝑡𝑣𝑣)


	Slide Number 1

